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Abstract. Hippocampus volumetry based on magnetic resonance imaging (MRI) has not yet been translated into everyday
clinical diagnostic patient care, at least in part due to limited availability of appropriate software tools. In the present study, we
evaluate a fully-automated and computationally efficient processing pipeline for atlas based hippocampal volumetry using freely
available Statistical Parametric Mapping (SPM) software in 198 amnestic mild cognitive impairment (MCI) subjects from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI1). Subjects were grouped into MCI stable and MCI to probable Alzheimer’s
disease (AD) converters according to follow-up diagnoses at 12, 24, and 36 months. Hippocampal grey matter volume (HGMV)
was obtained from baseline T1-weighted MRI and then corrected for total intracranial volume and age. Average processing time
per subject was less than 4 minutes on a standard PC. The area under the receiver operator characteristic curve of the corrected
HGMV for identification of MCI to probable AD converters within 12, 24, and 36 months was 0.78, 0.72, and 0.71, respectively.
Thus, hippocampal volume computed with the fully-automated processing pipeline provides similar power for prediction of
MCI to probable AD conversion as computationally more expensive methods. The whole processing pipeline has been made
freely available as an SPM8 toolbox. It is easily set up and integrated into everyday clinical patient care.
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INTRODUCTION

The National Institute on Aging–Alzheimer’s Asso-
ciation working group [1], the International Working
Group [2–4], and the European Federation of the
Neurological Societies [5] recommend the use of
core feasible biomarkers such as magnetic resonance
imaging (MRI)-based hippocampus volumetry to com-
plement clinical criteria with evidence for underlying
Alzheimer’s disease (AD) pathology in order to
improve the prognostic accuracy in amnestic mild cog-
nitive impairment (MCI).

Fully automated tools allow user-independent deter-
mination of hippocampal grey matter volume (HGMV)
and, therefore, eliminate the need for time consuming
manual segmentation of the hippocampus by trained
experts. There are various software tools for fully auto-
mated hippocampal volumetry available [6–9]. In a
systematic comparison of these tools to support the
qualification of HGMV as an imaging biomarker for
enrichment of clinical trials in predementia stages of
AD by the European Medicines Agency (EMA), all
these tools provided about the same accuracy for pre-
diction of probable AD in MCI subjects from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI)
[10]: the area under the receiver-operating character-
istics curve for prediction of MCI-to-AD conversion
within 2 years ranged from 0.73 to 0.76. A short
description of the tools evaluated in this EMA qual-
ification process is given in the Discussion section.

However, requirements for clinical routine differ
from requirements for clinical trials: for automatic hip-
pocampal volumetry to be useful also in busy everyday
clinical routine, the computation needs to be fast, ide-
ally uses only freely available software, is easy to
set-up, and still provides similar prognostic value as
the more sophisticated methods tested for the EMA
qualification.

Statistical Parametric Mapping (SPM, Wellcome
Trust Centre for Neuroimaging, London, UK) [11]
is freely available, widely used, well documented
open source and, therefore, is an ideal candidate tool
kit for adoption in clinical practice and to support
standardization [12]. Atlas-based hippocampal vol-
umetry with SPM has been validated against manual
tracing by clinical experts [6, 13]. However, a pre-
vious study of SPM5-based HGMV in ADNI-MCI
subjects found inferior prediction accuracy compared
to more sophisticated methods [14]. In the present
study, we propose a novel SPM8 processing pipeline
for hippocampal volumetry using tissue probabil-
ity maps from elderly control subjects and evaluate

it in ADNI-MCI subjects. This SPM processing
pipeline, too, avoids computationally expensive steps
in order to guarantee compatibility with the workflow
both in busy in-patient memory clinics and primary
care or specialist private practices with time restric-
tions and high patient throughput. Such a fast and
easy-to-use method might reduce the barrier for the
translation of hippocampal volumetry into everyday
clinical routine. In order to support this, the soft-
ware used in the present study (termed “HV”) has
been made freely available from the SPM homepage
(http://www.fil.ion.ucl.ac.uk/spm/ext/#HV).

MATERIAL AND METHODS

ADNI subjects

Data used in the preparation of this article were
obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (http://adni.loni.usc.edu).
The ADNI was launched in 2003 by the National
Institute on Aging (NIA), the National Institute of
Biomedical Imaging and Bioengineering (NIBIB), the
Food and Drug Administration (FDA), private phar-
maceutical companies and non-profit organizations,
as a $60 million, 5-year public private partnership.
The Principal Investigator of this initiative is Michael
W. Weiner, MD, VA Medical Center and University
of California – San Francisco. ADNI is the result of
efforts of many coinvestigators from a broad range
of academic institutions and private corporations, and
subjects have been recruited from over 50 sites across
the U.S. and Canada.

A total of 4,733 datasets from the ADNI1 database
were identified and downloaded in January 2012
using the following search criteria in the ADNI/LONI
search mask: Projects: ADNI, Modality: MRI, Series:
MP*AGE. Subjects were included if a 1.5 T MRI
screening scan was available and if they were diag-
nosed as MCI at time of inclusion and had received
follow-up diagnoses at 12, 24, and 36 months (ADNI-
MCIs). ADNI-MCIs who were diagnosed as AD at a
time-point during this period but later were reclassified
to MCI were excluded. In total, 198 ADNI-MCIs were
eligible: 103 ADNI-MCIs who had remained stable
over 36 months and 95 ADNI-MCIs who had converted
to AD within this time period. Thirty-two MCI-to-AD
converters had converted at the 12 months follow-up
examination, 43 subjects between the 12 and 24 months
examinations, and 20 subjects had converted between
the 24 and 36 months examinations.

http://www.fil.ion.ucl.ac.uk/spm/ext/#HV
http://adni.loni.usc.edu
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As control group we included all subjects from
ADNI1 for whom a 1.5 T MRI screening scan was
available for download and who were documented as
normal throughout a period of 36 months after baseline
clinical examination. This resulted in the inclusion of
137 subjects. There were no further inclusion or exclu-
sion criteria for the controls. There was no selection
according to age or gender.

The MR acquisition protocol used in the ADNI sub-
jects has been described in detail in [15]. In brief,
MR imaging was performed on 1.5T GE, Philips,
or Siemens systems using acquisition protocols that
had been optimized to harmonize image charac-
teristics across different platforms. High resolution
T1-weighted MRI scans were collected using a sagittal
3-dimensional magnetization prepared rapid gradient
echo (3D-MPRAGE) sequence with an approxi-
mate TR = 2400 ms, minimum full TE, approximate
TI = 1000 ms, and approximate flip angle of 8◦ (scan
parameters varied between sites, scanner platforms,
and software versions). Scans were collected with
a 24 cm field-of-view and an acquisition matrix of
192 × 192 × 166 (x, y, z dimensions), to yield a stan-
dard voxel size of 1.25 × 1.25 × 1.2 mm3. Images were
then reconstructed to give a 256 × 256 × 166 matrix
and voxel size of approximately 1 × 1 × 1.2 mm3.

Two 3D-MPRAGE scans had been acquired in
the same imaging session (back-to-back scans). We
consistently selected the first scan to mimic clinical
routine in which there is usually only a single scan
available. All images were downloaded as “unprepro-
cessed” (no gradwarp, B1 non-uniformity or N3-N3
correction, see http://adni.loni.usc.edu/methods/mri-
analysis/mri-pre-processing/).

Image preprocessing

3D-MPRAGE images were first segmented (into tis-
sue classes) and stereotactically normalized to a whole
brain template using the unified segmentation engine
of SPM8 (Wellcome Trust Centre for Neuroimaging,
London, UK) which combines both processes in a
single step. Correction for signal non-uniformity was
also included [16]. The unified segmentation engine
is guided by tissue probability maps (TPMs) for grey
matter (GM), white matter (WM), and cerebrospinal
fluid (CSF). TPMs provided by SPM8 are based on
scans acquired from healthy young adults. Since the
ADNI-MCI population is significantly older, SPM’s
default TPMs and default whole brain template were
replacedbyfreelyavailableTPMsanda freelyavailable
whole brain template which both had been generated

from a population of 662 healthy elderly subjects aged
between 63 and 75 years [17]. These TPMs feature
a voxel resolution of 1 × 1 × 1 mm3 while SPM’s
default TPMs are 2 × 2 × 2 mm3. Default settings of
the segmentation engine were used as described in [18].
Modulation of stereotactically normalized component
images for correction of warping-associated volume
changes was performed using the determinant of the
Jacobian of the transformation field.

Hippocampal volumetry

The unified segmentation engine of SPM8 provides
separate component images for GM, WM, and CSF,
all in the template space. HGMV was determined by
multiplying the normalized and modulated GM com-
ponent image with a predefined binary mask for both
hippocampi from a freely available toolbox [19], i.e.,
HGMV was obtained by summing the modulated GM
intensity over all voxels within the hippocampus mask.
This mask comprises cornus ammonis, fascia dentate,
and subiculum substructures as defined by Amunts and
coworkers [20]. The binary mask features an isotropic
resolution of 1 mm matching the resolution of the com-
ponent images. Total GM volume (GMV), total WM
volume (WMV), and total CSF volume (CSFV) were
calculated by summing up the voxel intensities of the
normalized and modulated component images of the
corresponding tissue class. Total intracranial volume
(TIV) was estimated as the sum of GMV, WMV, and
CSFV.

We also evaluated the prognostic value of hippocam-
pus white matter volume (HWMV) and hippocampus
parenchymal volume (HPV). HWMV was obtained by
applying the same hippocampus mask to the patient’s
modulated WM component image; HPV was com-
puted as HPV = HGMV+HWMV.

Correction for head size and age

HGMV was corrected for TIV and age to reduce
inter-subject variability of no interest [21]. For this
purpose, first bilinear regression analysis was per-
formed in the group of ADNI-normals (137 subjects)
with HGMV as dependent variable and TIV and age
as predictors. Then, HGMV of ADNI-MCIs was
adjusted to mean age and mean TIV of ADNI-normals
according to

HGMVad = HGMV + aHGMV (〈TIV 〉 − TIV )

+ bHGMV (〈age〉 − age) (1)

where TIV and age represent TIV and age of the
ADNI-MCI subject to be adjusted. aHGMV and bHGMV

http://adni.loni.usc.edu/methods/mri-analysis/mri-pre-processing/
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are the regression coefficients from the bilinear fit
to the ADNI-normals, and 〈age〉 and 〈TIV 〉 denote
mean age ( = 75.7 years) and mean TIV ( = 1450 ml)
of ADNI-normals at baseline.

HWMV and HPV were corrected for TIV and age
analogously.

Validation

The fully-automated SPM8 pipeline was validated
by head-to-head comparison with a semi-automated
method (HV-SNT, Medtronic Surgical Navigation
Technologies, Louisville, CO) which has been shown
to provide excellent agreement with manual tracing of
the hippocampus [22]. HV-SNT values were available
for download from the ADNI homepage for 134 of the
198 ADNI-MCIs (n = 68 stable MCI). HV-SNT values
were corrected for age and TIV using equation 1 with
the exact same regression coefficients as for correction
of SPM8-HGMV values.

Statistical analysis

Comparison of more than two groups with respect
to age, TIV, and Mini-Mental State Examination
(MMSE) score was performed by ANOVA. In case
of a significant effect, post-hoc tests between pairs of
groups were performed using the homoscedastic or het-
eroscedastic unpaired two-sample t-test depending on
the result of Levene’s test for equality of variance.

The power of HGMVad for differentiation between
MCI stables and MCI converters was assessed by
receiver operating characteristic (ROC) analyses using
the open source R package pROC [23]. The area
(AUC) under the ROC curve was used as perfor-
mance measure. Cut-off values on HGMVad for the
determination of accuracy, sensitivity, specificity, and
prognostic values were determined by maximizing the
Youden index J = sensitivity+specificity - 1 [24], which
is symmetric in sensitivity and specificity and, there-
fore, imposes equal penalty on false positive and false
negative classifications. The Youden index describes
the vertical distance of the ROC curve from the line
of chance (diagonal line). Thus, the criterion of maxi-
mum Youden index selects the point on the ROC curve
with largest vertical distance to the line of chance as
operating point.

MCI subjects with HGMVad less than the cut-off
were predicted to convert to clinical AD, MCI subjects
with HGMVad equal to or larger than the cut-off were
predicted to remain stable. Although the maximum of
the Youden index is a rather simple model, it might be

affected by statistical noise. Thus, overfitting cannot
be ruled out so that estimates of diagnostic accuracy
measures are most likely overly optimistic. In order
to correct for overfitting, 100 repeats of 20-fold cross-
validation were performed. In detail, we randomly split
the whole patient sample into 20 mutually exclusive
equal-sized subsets, so-called ‘folds’ (the size can dif-
fer between folds by 1 patient). MCI stable subjects
and MCI converters were randomized independently
into the 20 folds so that the class proportion (stables
versus converters) in each fold was about the same as
in the whole patient sample. Empirically, this ‘strati-
fication’ process reduces bias of cross-validation [25].
For the i-th fold, we determined the cut-off according
to the Youden criterion from the ROC curve including
all patients from the other 19 folds, and then applied
this cut-off to the patients in the i-th fold, i.e., each
patient in the i-th fold was categorized as true posi-
tive (TP), false positive (FP), true negative (TN), or
false negative (FN). After this was performed for each
of the 20 folds, accuracy, sensitivity, specificity, and
predictive values were computed over all patients in
the whole sample based on their categorization (as TP,
FP, TN, or FN) using the standard formulas. Thus, one
run of stratified 20-fold cross-validation provided one
estimate for accuracy, sensitivity, specificity and the
predictive values. Stratified 20-fold cross-validation
was repeated 100 times (with independent random-
ization into folds), which is a standard approach to
approximate ‘complete’ cross-validation, i.e., the aver-
age over all possible folds. Accuracy measures were
averaged over the 100 repeats.

Estimating errors of accuracy estimates by variance
across repeats of cross-validation is limited by the
risk of duplicated training samples. We therefore used
Equation (3) in [25] to estimate the 95% confidence
interval of the accuracy measures.

RESULTS

There was no difference between stable ADNI-
MCIs and the three subgroups of ADNI-MCI
converters (within 12, 24, 36 months) with respect to
gender-controlled TIV (p = 0.576) nor with respect to
age (p = 0.818) (Table 1). The MMSE score at baseline
was higher in the stable ADNI-MCIs than in each of the
three subgroups of ADNI-MCI converters (p ≤ 0.039).
The converter subgroups did not differ with respect to
MMSE at baseline.

Computation of HGMV and TIV from a MPRAGE
data set took less than four minutes per subject on
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Table 1
Characteristics of ADNI-MCI subgroups and ADNI-normals at baseline

Age MMSE TIV HGMV HGMVad

MCI stable (n = 103) 75.20 (7.18) 27.68 (1.66) 1512.5 (171.7) 8.24 (1.08) 8.13 (0.98)
MCI-to-AD converter within 12 months (n = 32) 74.66 (6.46) 26.56 (1.83) 1492.4 (173.2) 7.29 (0.99) 7.18 (0.94)
MCI-to-AD converter between 12 and 24 months (n = 43) 74.18 (7.87) 26.37 (1.59) 1518.6 (217.2) 7.69 (1.22) 7.52 (1.06)
MCI-to-AD converter between 24 and 36 months (n = 20) 75.76 (6.56) 26.50 (1.40) 1385.3 (151.3) 7.58 (0.92) 7.66 (0.92)
Normals (n = 137) 75.74 (5.24) 29.18 (0.99) 1450.0 (160.5) 8.69 (1.06) 8.69 (0.99)

Given are mean value (standard deviation). MMSE, Mini-Mental State Examination; TIV, total intracranial volume; HGMV, hippocampal grey
matter volume (ml); HGMVad, total hippocampal grey matter volume adjusted to mean age and mean TIV of ADNI-normals (ml).

an Intel Core 2 Duo CPU with 3.33 GHz and 8 GB
RAM.

Bilinear regression of HGMV in the group of ADNI-
normals with TIV and age as predictors resulted in the
following regression coefficients: aHGMV = 0.0011 and
bHGMV = −0.0609 ml/year. These values were used in
equation (1) to adjust HGMV for age and TIV (see
subsection “Correction for head size and age”).

There was a moderate to strong correlation of
HGMVad between the fully-automated SPM8 pipeline
and the semi-automated HV-SNT method (Pearson
correlation coefficient = 0.72, p = 2.2 e-16).

ROC curves for the SPM8-based HGMVad are
shown in Fig. 1. Maximum AUC of 0.78 was
achieved for identification of ADNI-MCIs who con-
verted within 12 months. There was a trend to lower
AUCs for detection of ADNI-MCIs who converted
within 24 (AUC = 0.72) and 36 months (AUC = 0.71).
Cross-validated cut-offs and corresponding accura-
cies, sensitivities, specificities, and predictive values
are listed in Table 2. Hippocampus white matter vol-
ume (HWMVad) provided considerably smaller AUC
for prediction of MCI-to-AD conversion (0.67, 0.62,
and 0.59 for conversion within 12, 24, or 36 months,
respectively), whereas the AUC for the hippocam-
pus parenchymal volume (HPVad) was only slightly
smaller (0.76, 0.70, and 0.68 for conversion within 12,
24, or 36 months, respectively).

Fig. 1. Receiver operating characteristic curve for the identification
of ADNI-MCI subjects who converted to probable AD within 12
(continuous line), 24 (broken line) and 36 months (dotted line) by
total hippocampal volume corrected for total intracranial volume
and age (HGMVad). Area under the curve is 0.78, 0.72, and 0.71,
respectively.

The semi-automatic HV-SNT method (with the
same correction for TIV and age) provided only
slightly higher AUCs (0.80, 0.72, and 0.73 for 12,

Table 2
Area (AUC) under the ROC curve, cut-off value on HGMVad determined by the maximum Youden index, and accuracy measures for prediction
of ADNI-MCI to probable AD conversion within 12, 24 or 36 months by hippocampal grey matter volume (HGMVad) adjusted to mean age and
mean TIV of ADNI-normals. All accuracy measures were cross-validated by 100 repeats of 20-fold cross-validation. 95% confidence intervals
(CI) are given in brackets. The 95%-CI for the AUC was obtained as described in [43], the 95%-CIs for the accuracy measures were estimated

according to [25]. The standard deviation of the cut-off is given in round brackets

Cross validated

Interval [months] AUC Cut-off [ml] Accuracy Sensitivity Specificity PPV NPV

12 0.78 7.85 0.66 0.75 0.63 0.39 0.89
[0.69–0.86] (0.1) [0.58–0.73] [0.67–0.82] [0.55–0.71] [0.31–0.47] [0.83–0.93]

24 0.72 8.09 0.63 0.72 0.56 0.54 0.73
[0.64–0.79] (0.02) [0.56–0.70] [0.65–0.78] [0.49–0.63] [0.47–0.61] [0.66–0.79]

36 0.71 8.12 0.63 0.73 0.55 0.6 0.69
[0.63–0.78] (0.01) [0.56–0.69] [0.66–0.79] [0.48–0.62] [0.53–0.67] [0.62–0.75]

ml, milliliter; PPV, positive predictive value; NPV, negative predictive value.
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24, and 36 months prediction). The difference in AUC
between the HV-SNT method and the SPM8 process-
ing pipeline was not significant statistically (two-tailed
p according to [26] was 0.799, 1.000, and 0.726 for
conversion within 12, 24, or 36 months, respectively).

DISCUSSION

The aim of the present study was to make a soft-
ware tool for fully automated hippocampus volumetry
freely available that (i) provides high processing speed
by avoiding computationally expensive steps in order
to guarantee compatibility with the workflow in busy
clinical routine patient care, and (ii) results in similar
performance for prediction of MCI-to-AD conver-
sion as the tools evaluated in the EMA qualification
process of HGMV as an imaging biomarker for enrich-
ment of clinical trials in predementia stages of AD
[10], namely FreeSurfer [27], NeuroQuant [28, 29],
Learning Embeddings for Atlas Propagation [9], and
Hippocampus Multi-Atlas Propagation and Segmenta-
tion [8, 30].

In FreeSurfer the segmentation of brain structures
including the hippocampus is based on a probabilistic
atlas (created from a manually labelled training set)
providing means and variances of the MRI intensi-
ties of the considered brain structures separately for
each location and each tissue class [6]. In addition,
Freesurfer uses information on local spatial relation-
ships between brain structures (e.g., ‘the hippocampus
is posterior and inferior of the amygdala’) which means
that the probability of a voxel to belong to a given brain
structure is computed not only from its MRI intensity
and prior probabilities (specified in the probabilistic
atlas) but also as a function of the structure label of
neighboring voxels. This additional prior information
is also generated from the manually labeled training
set (using spatially varying and non-isotropic Markov
random fields). Registration of the MRI of the indi-
vidual subject with the atlas space is performed by a
low-dimensional affine transformation (12 degrees of
freedom).

NeuroQuant uses discrete cosine transform non-
linear registration to transform the MR image of an
individual brain to a probabilistic atlas customized for
labeling anatomy in elderly subjects [29]. The auto-
mated segmentation of brain structures is performed
with a similar method as used by FreeSurfer [6] (see
above).

Learning Embeddings for Atlas Propagation pro-
vides a set of 30 MR brain images of young healthy

subjects (median 30.5 y) in each of which a set of
83 anatomical structures including the hippocampi has
been labelled manually [9]. These 30 atlases together
with the MR image on an individual subject to be ana-
lyzed are embedded in a coordinate system in which
the distance between two images is determined by their
similarity (based on normalized mutual information)
so that similar images are close to each other. Each
one of the 30 atlases (or of a subset) is then propagated
through the manifold defined by this coordinate system
towards the individual MRI. This propagation is per-
formed in several steps (‘from neighbor to neighbor
to neighbor . . . ’) in order to avoid the need to esti-
mate large deformations which most likely would be
required for direct transformation of an atlas to the indi-
vidual MRI. The rationale for this is that estimation
of large deformations is particularly prone to errors.
After all atlases have been propagated to the individual
MRI, a probabilistic atlas is generated from the struc-
ture labels of the transformed atlases. This probabilistic
segmentation is refined by using intensity information
from the individual image [9].

Hippocampus Multi-Atlas Propagation and Seg-
mentation starts with a hippocampal template library
of manually segmented regions from 55 subjects, 36
clinically diagnosed probable AD patients, and 19
age-matched healthy controls [8, 30]. The individual
subject’s MR image is registered to the healthy con-
trol subject to which all of the template library scans
had been registered. The registration is performed in
two steps: non-linear brain-to-brain registration based
on free form deformation [31] followed by linear
hippocampus-to-hippocampus registration (6 degrees
of freedom) to improve alignment of the hippocampi.
After registration, an intensity threshold is applied to
exclude white matter and CSF voxels. The resulting
hippocampus image of the individual subject is com-
pared to all hippocampi in the template library using
cross-correlation. Finally, the hippocampus segmen-
tations from the best 8 matches are combined using
‘simultaneous truth and performance level estimation’
with constraints on spatial smoothness [32].

The processing pipeline proposed in the present
study is based on combined segmentation and non-
linear brain-to-brain registration of the MR image of
the individual subject to a whole brain template using
the unified segmentation engine of SPM8. Unified seg-
mentation is guided by a priori tissue probability maps
generated from a population of healthy elderly sub-
jects [17]. After combined segmentation/registration,
the grey matter volume of the hippocampus is obtained
by applying a binary hippocampus mask predefined
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in template space, i.e., by summing up all voxel
intensities of the registered and modulated grey mat-
ter component image within the mask. The latter is
clearly less sophisticated than the elaborated delin-
eation methods implemented in the software tools
evaluated by the EMA. However, the results of the
present study demonstrate that the SPM8 processing
pipeline provides similar performance for prediction of
MCI-to-AD conversion as these methods. The pipeline
avoids computationally expensive steps and, therefore,
allows hippocampal volumetry to be performed within
a few minutes. In addition, the pipeline is entirely
built upon freely available software. Furthermore, the
pipeline is easily adapted, for example by changing the
template and the tissue probability maps (just a few
files to be replaced) to optimize the processing for a
specific patient group. It is also easily extended to esti-
mate the volume of additional brain structures, simply
by adding corresponding masks.

Clerx and coworkers, using Learning Embeddings
for Atlas Propagation in MCI subjects from another
multi-center trial than ADNI, found an AUC of 0.71 for
prediction of conversion within 2 years [33]. The AUC
for 2 years prediction provided by the novel SPM8-
based processing pipeline was 0.72 in the present study
(Table 2), and thus in very good agreement.

A similar, SPM5-based processing pipeline has pre-
viously been evaluated by Risacher and colleagues in
ADNI-MCI subjects [14]. Using Cohen’s effect size
of the HGMV difference between MCI converters and
MCI stables as performance measure, these authors
found an effect size of about 0.4 (derived from Fig. 7
in [14]) for one-year prediction of MCI-to-AD con-
version. For comparison, Cohen’s effect size of the
SPM8-based HGMV in the present study is 0.72 for
one-year prediction, even larger than the effect size
Risacher et al. reported for FreeSurfer-HGMV [14].
Improved performance of the novel SPM8-pipeline
compared to the previously described SPM5-pipeline
is mainly due to the use of the more appropriate a
priori TPMs provided by Lemaitre and co-workers
[17], which (i) have been generated from elderly, i.e.,
more age-matched subjects and (ii) feature 1 × 1 × 1
rather than 2 × 2 × 2 mm3 voxel resolution. This was
confirmed by the following experiments. For the first
experiment we down-sampled brain template and tis-
sue probability maps from the elderly subjects to
2 × 2 × 2 mm3 voxel size. Apart from this, prepro-
cessing of individual MRIs (both MCI subjects and
ADNI-normals), hippocampal volumetry, correction
for head size and age as well as ROC analysis were
repeated as described in the methods section. The AUC

showed a slight degradation (0.76, 0.70, and 0.69 for
conversion within 12, 24, or 36 months, respectively).
In the second experiment we used the default SPM
template and the default SPM TPMs. This resulted
in substantial degradation of the AUCs (0.69, 0.67,
and 0.67 for conversion within 12, 24, or 36 months,
respectively). These results indicate that improved
performance of the novel SPM8 processing pipeline
compared to the SPM5 pipeline evaluated by Risacher
and co-workers [14] is primarily due to the difference
in the subject sample from which template and tissue
probability maps have been generated: elderly controls
appears more appropriate than young controls, most
likely because they are better age-matched. The unified
segmentation engine is the same in SPM5 and SPM8
[11].

In a previous study [34] we tested scaling of HGMV
to the individual total GMV, i.e., the HGMV/GMV
ratio, to reduce variability of HGMV associated with
inter-subject variability of the head size. In this pre-
vious study the simple scaling approach had resulted
in a slightly better diagnostic accuracy for the differ-
entiation between an AD- and a non-AD-group than
adjustment for age and TIV based on a bilinear fit in
a control group (AUC = 0.88 versus 0.86; see Table 2
in [34]). However, scaling to total GMV is limited in
case of spatially more extended atrophy with substan-
tial loss of GM outside of the hippocampus, since then
scaling to total GMV counters the effect of AD on
hippocampal volume. Thus, correction for TIV and
age based on a bilinear fit in healthy controls might
be more robust and, therefore, might be preferred in
everyday patient care. This was the rationale for using
this method in the present study. Nevertheless, we
also performed scaling of the HGMV to the individ-
ual total GMV and found AUC and accuracy measures
of the resulting HGMV/GMV ratio for the prognosis
of MCI-to-AD conversion to be lower than the corre-
sponding values for the HGMV adjusted for age and
TIV (results not shown). This might be explained by
the fact that the MRI data of the multi-centric ADNI
have been acquired with a variety of different MR
scanner types, in contrast to the monocentric MRI
data analyzed in [34]. Multi-centric MRI acquisition
causes additional variability in all volumetric measures
including both GMV and TIV. However, Huppertz and
coworkers, using an SPM5 processing pipeline, found
inter-scanner variability (as measured by the coeffi-
cient of variation across multiple scanners) to be about
20% larger for GMV than for TIV [35]. The results of
the present study now suggest that GMV and HGMV
do not vary by the same amount in the same direction
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between different scanners so that their inter-scanner
variabilities do not cancel in the HGMV/GMV ratio.
Thus, TIV might be more appropriate than GMV to
correct hippocampus volume for head size in multi-
center studies.

When comparing grey, white, and parenchymal
hippocampus volume for prediction of MCI-to-AD
conversion we found both hippocampus white mat-
ter volume (HWMVad) and hippocampus parenchymal
volume (HPVad) to provide smaller AUC than hip-
pocampus grey matter volume (HGMVad). This
suggests that hippocampal volumetry in MCI subjects
should be restricted to grey matter. However, the fact
that the SPM8 pipeline easily allows determination of
both grey and white matter volume of the hippocam-
pus separately might be useful in other indications, for
example in depression [36].

Observer input required to supervise the process-
ing quality of the fully-automated SPM8 processing
pipeline is restricted to visual inspection of coronal
slices of the patient’s grey matter probability map with
the hippocampus masks overlaid as contours in order
to detect failures of stereotactical normalization and/or
grey matter segmentation. This display is automati-
cally generated by the pipeline. However, there was no
failure in any of the subjects (198 ADNI MCI sub-
jects and 137 ADNI normals), although no subject
of the ADNI cohort was excluded based on techni-
cal constraints such as poor MR image quality. This
demonstrates the robustness of the method, which is
an important prerequisite for use in everyday clinical
routine.

As a limitation of the present study, it should be
noted that hippocampus atrophy is by no means spe-
cific for AD, since many other diseases present with
hippocampal atrophy, particularly when associated
with episodic memory problems. For example, Möller
and co-workers recently reported even more pro-
nounced atrophy of the right hippocampus in patients
with behavioral variant frontotemporal dementia
(bvFTD) compared to patients with Alzheimer’s dis-
ease matched for age, gender, and education, although
MMSE was significantly higher in the bvFTD than
in the AD group (mean MMSE = 24 versus 21) [37].
Abdulla and co-workers recently reported hippocam-
pal volume loss and correlation with verbal memory
performance in patients with amyotrophic lateral scle-
rosis [38]. Particularly relevant in this context might
be ‘hippocampal sclerosis of aging’ which is increas-
ingly recognized in recent years and probably indicates
a separate disease process. It is a key AD mimic, i.e.,
the majority of patients with relatively pure ‘hippocam-

pal sclerosis of aging’ is diagnosed clinically as having
probable AD [39]. ‘Hippocampal sclerosis of aging’ is
characterized by cell loss, gliosis, and atrophy in the
hippocampus that is out of proportion to AD-specific
neuropathology [39].

It should also be noted that the positive predictive
values of the HGMV found in the present study were
quite low: 0.39, 0.54, and 0.60 for MCI-to-AD con-
version within 12, 24, and 36 months, respectively
(Table 2). These values are clearly too low to encour-
age the use of hippocampus volumetry for prediction
of MCI-to-AD conversion in individual patients in
clinical patient care. In contrast, the negative predic-
tive values were considerably higher: 0.89, 0.73, and
0.69 for conversion within 12, 24, and 36 months,
respectively (Table 2). Thus, the primary benefit from
hippocampal volumetry in clinical routine is expected
to be the ‘exclusion’ of MCI-to-AD conversion in a
significant fraction of patients, rather than its predic-
tion. Considering the enormous mental stress caused
by the suspicion of Alzheimer’s disease to patients and
their families, this is of high relevance.

Finally, it should be noted that the novel SPM8 pro-
cessing pipeline overestimates the HGMV. Bilateral
HGMV in the ADNI-normals was 8.69 ml (Table 1),
which is considerably larger than actual HGMV in
healthy elderly subjects [36, 40]. The reason for this
overestimation is the following. There is some resid-
ual anatomical inter-subject variability after unified
segmentation, more pronounced in case of strongly
atrophic brains. This residual anatomical inter-subject
variability cannot be taken into account when using
a fixed predefined hippocampus mask for volume-
try, but results in additional inter-subject variability of
the HGMV estimates. The relative magnitude of the
additional variability increases with decreasing size
of the hippocampus mask. We therefore selected the
rather large hippocampus mask provided by Eickhoff
and coworkers [19]. This mask has been obtained by
binarization of a probabilistic hippocampus template
and, therefore, includes all voxels with non-vanishing
probability of belonging to the hippocampus. This
guarantees that the hippocampus is completely
included within the mask in each individual subject
despite the residual anatomical inter-subject variabil-
ity after unified segmentation. As a consequence,
the mask also includes neighboring non-hippocampal
voxels of the medial temporal lobe and, therefore,
results in overestimation of the hippocampus volume.
However, despite this overestimation, the SPM8-
HGMV values showed moderate to strong correlation
with the results of the semi-automated HV-SNT
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(Pearson correlation coefficient = 0.72), in good agree-
ment with previous reports on the correlation between
fully-automated versus manual segmentation of the
hippocampus in ADNI subjects [41]. Furthermore, the
AUC of the SPM8-HGMV for MCI-to-AD conver-
sion within 2 years of 0.72 is in good agreement with
the AUC values reported from the EMA qualification
process which range between 0.60 and 0.77 (includ-
ing results from both de novo analysis and literature
review) [10]. This suggests that the method for the
estimation of the hippocampus volume does not have
a large impact on its prognostic value in MCI subjects.
It also suggests that most accurate anatomical delin-
eation of the hippocampus volume is not critical for its
performance in this application scenario. This might
be related to intrinsic limitations of the hippocam-
pus volume as prognostic marker in MCI subjects,
i.e., the existence of an upper threshold for its prog-
nostic accuracy considerably below 100%, which also
the most accurate volumetry cannot surpass. Improved
prognostic value might be achieved by volumetry of
hippocampal subfields [42]. However, whether the
novel SPM8 processing pipeline might be extended to
estimate grey matter volume in hippocampal subfields
remains to be tested.

CONCLUSION

The SPM8-based processing pipeline for fully-
automated hippocampal volumetry proposed in the
present study provides similar performance for predic-
tion of MCI-to-AD conversion as more complex tools.
The processing pipeline builds entirely upon freely
available software and operates in near real time (a few
minutes per subject). This may facilitate integration of
hippocampal volumetry into routine clinical diagnostic
care of subjects presenting with cognitive impairment.
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